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LETTER TO THE EDITOR

Storage capacity of the fully-connected committee machine

R Urbanczik†
Institut für theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Ẅurzburg,
Germany

Received 24 January 1997

Abstract. The storage capacity, that is the number of patterns which can be stored per weight,
is calculated for the fully-connected committee machine with real couplings andK hidden units
from the vanishing of the entropy of the internal representations, and it is found to diverge as
(16/(π − 2))

√
lnK.

In the last few years statistical mechanics has been applied with considerable success to the
study of multilayer neural networks, e.g. [1–5]. However, for the committee machine, the
theoretical architecture which is arguably most similar to the networks used in real-world
applications, a satisfactory analysis of the capacity problem has not been available. Recently,
progress has been made in this matter for a restricted architecture, the tree committee
machine, by focusing on the number of implementable internal representations instead of
on the Gardner volume [6, 7]. Here we extend this analysis to the fully-connected version
and show that some claims made in the literature [3, 8] with regard to the capacity of this
machine are incorrect.

The fully-connected committee machine consists ofK hidden units, each characterized
by a weight vectorJj ∈ RN and computingτJj (ξ) = sign(J Tj ξ) for an input ξ ∈ RN .
The outputσJ (ξ) of the committee is then determined by the majority of the hidden
units, σJ (ξ) = sign(

∑K
j=1 τJj (ξ)). In the capacity problem one asks whether for a given

set of αKN input/output pairs,T = {(ξµ, σµ)}αKNµ=1 , weight vectorsJj exist such that
σJ (ξ

µ) = σµ. In statistical mechanics one is interested in finding up to what critical size
αc(K)KN of T this problem will typically have a solution, that is with probability 1 in
the thermodynamic limit for independent choices of(ξµ, σµ) from the normal distribution
(ξµ) and, in the case ofσµ, from the uniform distribution on{−1, 1}. A given setT will
be realizable by the machine if an internal representationτ = {τµj } exists, which yields the
desired outputs and is implementable. One is thus lead to consider the volumeVτ associated
with such a representation:

Vτ (T ) =
αKN∏
µ=1

θ

(
σu

K∑
j=1

τ
µ

j

)∫
dJ p0(J )

αKN∏
µ=1

K∏
j=1

θ(τ
µ

j J
T
j ξ

µ). (1)

Hereθ is the Heaviside function andp0(J ) is the uniform density on the set{J ∈ RNK :|Jj | =
1}. In the end we shall not be interested in the magnitude of theVτ (T ) but only whether
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they are zero or not, but the calculation of (1) is a useful intermediate step. In particular,
we may consider

S(m) = 1

KN
〈ln TrτVτ (T )m〉T (2)

where the trace runs over all internal representations. IfS(0) = limm→0 S(m) = 0 for some
αd(K) the entropy of the implementable internal representations (which give the correct
output) is no longer extensive. For largeK we expectαd(K) ' αc(K) since the volume
associated with any single internal representation shrinks to zero in this limit. Furthermore
the calculations will yield thatS(0) is negative forα > αd(K) and this is incompatible with
the assumption thatαc(K) is greater thanαd(K).

S(m) may be calculated by averaging(TrτVτ (T )m)n for integern andm and using an
analytical continuation in these parameters. Replicating (1) in this manner replaces theK

integrals over theJj by Knm integrals overJ abj , a = 1, . . . , m and b = 1, . . . , n. The

average over the setsT then leads to order parametersqaba
′b′

jk = J abj T
J a
′b′

k . We assume a
site and replica symmetric (RS) parametrization of this matrix that is

qaba
′b′

jk = K−1[(1− δaa′)p0+ δaa′(1− δbb′)p1+ δaa′δbb′p2]

+δjk[(1− δaa′)q0+ δaa′(1− δbb′)q1+ δaa′δbb′q2] (3)

where by normalizationq2 = 1−p2/K. The RS assumption has been checked in [7] for the
tree architecture: the RS saddlepoint was found unstable for finiteK but marginally stable
in the limit K →∞. Furthermore, (3) incorporates the scalingpl = O(1) asK →∞, an
assumption we shall recover in a self-consistent way later.

Using this parametrization, for largeN the value ofS(m) is given by

S(m) = extr
{pl},{ql}

αGr({pl}, {ql}, m)+Gs({pl}, {ql}, m). (4)

By arguments similar to [9] the energy termGr may be written as

Gr =
〈

ln

〈
Trτ θ

( K∑
j=1

τj

)〈 K∏
j=1

θ [τj (uxj + ūx̄ + vyj + v̄ȳ + wzj + w̄z̄)]
〉m
{zj }

〉
{yj }

〉
{xj }

(5)

where thexj , yj , zj are independent normally distributed real random variables andx̄ =
K−1∑K

j=1 xj , ȳ = K−1∑K
j=1 yj , z̄ = K−1∑K

j=1 zj . The prefactors controlling their
contribution to the sum in the theta function are related to the order parameters by

u2 = q0 (u+ ū)2 = p0+ q0

v2 = q1− q0 (v + v̄)2 = q1+ p1− q0− p0

w2 = 1− p2/K − q1 (w + w̄)2 = 1− p2/K + p2− q1− p1. (6)

The entropy termGs in (4) can be written as

Gs = K − 1

2K
F(u2, v2, w2, m)+ 1

2K
F((u+ ū)2, (v + v̄)2, (w + w̄)2, m)

F (a, b, c,m) = (m− 1) ln c + ln(c +mb)+ ma

c +mb . (7)

It is interesting to note that (4) is closely related to the calculation of the Gardner volume
V (T ) = TrτVτ (T ) with one step of replica symmetry breaking. In particular, one finds

1

KN
〈lnV (T )〉T = extr

{pl},{ql},m
1

m
[αG∗r ({pl}, {ql}, m)+Gs({pl}, {ql}, m)]. (8)
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HereG∗r is obtained fromGr by commuting the trace and the exponentiation withm. More
explicitly let

f ({Yj }, {τj }) =
〈∏

j

θ [τj (Yj + wzj + w̄z̄)]
〉
{zj }

and Yj = uxj + ūx̄ + vyj + v̄ȳ

(9)

then

G∗r =
〈

ln

〈[
Trτ θ

(∑
j

τj

)
f ({Yj }, {τj })

]m〉
{yj }

〉
{xj }
. (10)

In contrast to the internal representations approach, where we need to considerm → 0,
the extremal value ofm must be obtained in (8). However, even for the latter,m→ 0 as
the critical capacity is approached, and so this difference is only minor. Furthermore, as
α→ αc(K) one expectsw, w̄→ 0, so consequently[

Trτ θ

(∑
j

τj

)
f ({Yj }, {τj })

]m
' max

τ
θ

(∑
j

τj

)
f ({Yj }, {τj })m

6 Trτ θ

(∑
j

τj

)
f ({Yj }, {τj })m (11)

and thusG∗r 6 Gr . So calculatingαd(K) using S(0) = 0 and (4) andαc(K) from the
divergence of (8) will yieldαc(K) 6 αd(K). This contradicts the definitions of these
capacities and shows that for finiteK the RS parametrization (3) is insufficient. However,
the scaling of the order parameters we shall find below suggests that the difference between
the left- and right-hand side of (11) is immaterial for largeK, and that (4) and (8) should
to leading order yield the same result in this limit. These observations are quite compatible
with what was found by the stability analysis for the tree.

To calculate the capacity, our main task is to bring the energy term (5) into a more
manageable form. We only need to do this form→ 0 and the only reasonable behaviour
of w in this limit is w → 0. Consequently the average overzj in the expression forGr

will be dominated by the value of the maximum, and after a gauge transformation we find
that form,w→ 0

f ({Yj }, {τj })m ' max
{zj }

e−
1
2mw

−2∑
j z

2
j

∏
j

θ

(
τjYj + zj + w̄

w
τj

1

K

∑
k

τkzk

)
. (12)

The above can be seen as a quadratic optimization problem with linear inequality constraints.
Denote by{z∗j } the argument of the maximum and let us say that a sitej is in the interior

if τjYj + z∗j + (w̄/w)τj 1
K

∑
k τkz

∗
k is positive. It is then easily seen that, forj and k two

interior sites,τj z∗j = τkz∗k , and we denote this common value bys∗. The main obstacle to
simplifying (12) is that we do not know which of the sites lie in the interior. Consequently,
we focus on the large-K limit and, taking a hint from the analysis of the tree committee
in [7], assumemw−2 to be of the order ofK2. Furthermore, we assume that the ratio of
w̄ andw does not diverge with increasingK. Let us call a sitej embedded ifτjYj is
positive. With the above scaling, one sees that (12) will be negligibly small for largeK

unlessYj = O(1/K) for any site which is not embedded and unless the number of non-
embedded sites is small. Generically theYj are on the order of 1 and so we may assume
this for the sites which are embedded. This scaling of theYj implies that for largeK a site
will lie in the interior exactly if it is embedded. Assumings∗ is known, this enables us to
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calculate the value ofz∗j for the sites which do not lie in the interior as a function ofs∗.
Optimizing s∗ yields, for largeK and the above scaling of theYj ,

s∗ ' − w̄
w

1

K

∑
j

τjYj θ(−τjYj ) (13)

and

f ({Yj }, {τj })m ' exp

[
− K

2

2c

∑
j

Y 2
j θ(−τjYj )+

K

2c

(
c̄

c
− 1

)(∑
j

Yj θ(−τjYj )
)2]

. (14)

Here we have introduced the new parametersc and c̄ reflecting the scaling ofm,w and w̄
via

m

w2
= K2

c
and

m

(w + w̄)2 =
K2

c̄
. (15)

Later we shall find thatc = c̄ holds for the stationary values and hencew̄/w = 0. So we
could have arrived at the statement that the interior sites are the embedded sites, and thus
at (14), by the argument that this will be true in the limit of small values ofw̄/w.

To perform the trace and the average overyj in (5) we now rewrite the argument of the
logarithm inGr as∫

dλ dµθ(µ)

〈
Trτ δ

(
µ− 1√

K

∑
j

τj

)
δ(λ−

√
K(ūx̄ + v̄ȳ))

×f
({
uxj + vyj + λ√

K

}
, {τj }

)m〉
{yj }

(16)

and introduce a Fourier representation of theδ-functions with conjugate variableŝλ andµ̂.
Using (14) forf and linearizing the square of the sum in (14) by a Gaussian integral (Dρ)
factorizes the trace and the average overyj . Performing the trace and the average allows
us to rewrite (16) to leading order inK as∫

dλ dλ̂ dµ dµ̂

4π2
θ(µ)

∫
Dρ exp

[
− iµµ̂− iλλ̂+ iλ̂ū

√
Kx̄ + iµ̂Z(λ)− 1

2
µ̂2(1− A(λ))

−µ̂λ̂v̄B(λ)− 1

2
λ̂2v̄2+

√
π

2

√
c

v
B(λ)

(
1− i

√
2

π
µρd/K + ρ2d2/(2K)

)]
.

(17)

Hered2 = (c̄/c)− 1 and

Z(λ) = 1√
K

∑
j

(
1− 2H

(
uxj + λ/

√
K

v

))

A(λ) = 1

K

∑
j

(
1− 2H

(
uxj + λ/

√
K

v

))2

B(λ) = − 2

K

∑
j

H ′
(
uxj + λ/

√
K

v

)
.

(18)

It is straightforward to perform the integral overρ in (17). For largeK one may linearize
the dependence onλ and find thatZ(λ) ' Z(0)+λB(0)/v as well asA(λ) ' A(0), B(λ) '



Letter to the Editor L391

B(0). This makes it possible to carry out the remaining integrations and rewrite (17) as(
1−

√
π

2

B(0)

Kv

1√
c
(c̄ − c)

)− 1
2

e
√

π
2

√
cB(0)/vH

(
− Z(0)+ ū√Kx̄B(0)/v√

1− A(0)+ B(0)2(v̄2/v2+ 2v̄/v)

)
.

(19)

To arrive at the largeK expansion ofGr , we now need to average the logarithm of this
expression overxj . This is readily done by applying the central limit theorem to show that
in this limit Z(0) and

√
Kx̄ are correlated Gaussian random variables, whereasA(0) and

B(0) may be equated with their average over thexj . Thus for largeK

Gr =
√
c + 1

2K
√
c
(c̄ − c)+

∫
Dx lnH

(
−
√

(2/π)(p0+ arcsinq0)

1− (2/π)(−p2+ p0+ arcsinq0)
x

)
. (20)

Similarly to the tree committee, the last summand is just the energy term arising in the RS
calculation of the Gardner volume for largeK. By arguments analogous to [5] the extremal
problem (4) may now be found to yield

c = ac(K)
−2 c̄ = c p2 = −1

1− q0 = 128

(π − 2)2
αc(K)

−2 p0 = −q0 (21)

and

αc(K) = 16

π − 2

√
lnK. (22)

In contrast to the claim in [3] the storage capacity is higher than for the tree committee†
where the prefactor is 16/π . But it does not diverge like lnK as claimed in [8].‡
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