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LETTER TO THE EDITOR

Storage capacity of the fully-connected committee machine

R Urbanczik

Institut fir theoretische Physik, Univerait Wurzburg, Am Hubland, D-97074 Wzburg,
Germany

Received 24 January 1997

Abstract. The storage capacity, that is the number of patterns which can be stored per weight,
is calculated for the fully-connected committee machine with real couplingkahididen units

from the vanishing of the entropy of the internal representations, and it is found to diverge as
(16/( — 2))v/InK.

In the last few years statistical mechanics has been applied with considerable success to the
study of multilayer neural networks, e.g. [1-5]. However, for the committee machine, the
theoretical architecture which is arguably most similar to the networks used in real-world
applications, a satisfactory analysis of the capacity problem has not been available. Recently,
progress has been made in this matter for a restricted architecture, the tree committee
machine, by focusing on the number of implementable internal representations instead of
on the Gardner volume [6, 7]. Here we extend this analysis to the fully-connected version
and show that some claims made in the literature [3, 8] with regard to the capacity of this
machine are incorrect.

The fully-connected committee machine consist&kohidden units, each characterized
by a weight vector/; € R and computing,, (§) = sign(J;"¢) for an inputé € RY.
The outputo, (&) of the committee is then determined by the majority of the hidden
units, o (§) = sugn(ZJ:l 7;,(£)). In the capacity problem one asks whether for a given
set of e KN input/output pairs,7 = {(&*, a“)}”jKj", weight vectorsJ; exist such that
o;(E") = o*. In statistical mechanics one is mterested in finding up to what critical size
ac(K)KN of T this problem will typically have a solution, that is with probability 1 in
the thermodynamic limit for independent choices(®t, o*) from the normal distribution
(¢*) and, in the case of*, from the uniform distribution orf—1, 1}. A given set7 will
be realizable by the machine if an internal representatieﬂ{r}‘} exists, which yields the
desired outputs and is implementable. One is thus lead to consider the vig)uemsociated
with such a representation:

aKN K KN K
VD =[] 9(0”er‘> [ [ [Tocs7en 1)
=1

n=1 n=1j=

Heref is the Heaviside function aneb(J) is the uniform density on the sef € RVX:|J;| =
1}. In the end we shall not be interested in the magnitude ofith@) but only whether
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they are zero or not, but the calculation of (1) is a useful intermediate step. In particular,
we may consider

1 m
KN (In Trr Vr (T) )T (2)
where the trace runs over all internal representation§(Qf = lim,,_.o S(m) = 0 for some
ag(K) the entropy of the implementable internal representations (which give the correct
output) is no longer extensive. For large we expectay(K) >~ ac(K) since the volume
associated with any single internal representation shrinks to zero in this limit. Furthermore
the calculations will yield thaf (0) is negative forx > aq(K) and this is incompatible with
the assumption that.(K) is greater thany(K).

S(m) may be calculated by averagiridr, V. (7)™)" for integern andm and using an
analytical continuation in these parameters. Replicating (1) in this manner replacks the
integrals over theJ; by Knm integrals overi“b, a=1,...,mandb =1,...,n. The

average over the sefs then leads to order parameter§” = JJ.‘”’TJ,f"". We assume a
site and replica symmetric (RS) parametrization of this matrix that is
git" = KM = 840) Po + Saa (1 = 850) p1 + Saar Sy 2]

+5/k[(1 - 8aa’)q0 + (Saa’(l - (Sbb’)ql + (Saa’5bb’q2] (3)
where by normalizatiog, = 1— p,/K. The RS assumption has been checked in [7] for the
tree architecture: the RS saddlepoint was found unstable for fhibeit marginally stable
in the limit K — oo. Furthermore, (3) incorporates the scaling= O(1) asK — oo, an

assumption we shall recover in a self-consistent way later.
Using this parametrization, for largg the value ofS(m) is given by

S(m) = {p(,?}x{tqfl}OlGr({Pz}, {ai}, m) + G;({pi}. {qi}, m). 4)

S(m) =

By arguments similar to [9] the energy ter@) may be written as

K K "
G, = <In<TrT 9(2 f,->< [ [0lr (ux; + iix + vy; + 05 + wz; + wz)]> > > )
| Wi )

j=1 j=1 {zj
where thex;, y;, z; are independent normally distributed real random variablesiard

K%, 7 = K Y1y, 2 = K'Y L1z The prefactors controlling their
contribution to the sum in the theta function are related to the order parameters by

u® = qo (u +i)* = po+ qo
v =q1 - qo W+ )2 =q1+ p1—qo— po
w?=1-p/K —q1 (w+ w)? =1— pp/K + p2 — g1 — p1. (6)
The entropy ternG; in (4) can be written as
K-1 1
G, = 7F(uz, V2, w? m) + o Fll+ i0)?, (v + )2, (w + )2, m)
ma

F(a,b,c,m)=(m —1DInc+In(c +mb) + . )
c+mb

It is interesting to note that (4) is closely related to the calculation of the Gardner volume
V(T) = Tr, V. (7) with one step of replica symmetry breaking. In particular, one finds

1 1
wy V(D) = oo %[aG’:({p[}, {ar, m) + Gs({pi}s {qi}, m)]. )
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Here G} is obtained fromG, by commuting the trace and the exponentiation withMore
explicitly let

f({Yj},{Tj}):<H0[rj(Yj+ij+zI)Z)]> and Y; = ux; + ux + vy; + 0y
j {zj}

9)

ij=<|n<[Trfe<sz>f({yj}, {r,})} > > : (10)
j {viH {x;}

In contrast to the internal representations approach, where we need to consideD,

the extremal value ofi must be obtained in (8). However, even for the latter;> 0 as

the critical capacity is approached, and so this difference is only minor. Furthermore, as
a — ac(K) one expectw, w — 0, so consequently

[Tr,e(z rj)f({Yj}, {rj})} ~ mgx@(Zz,)f({Y,}, ("

J J

then

< Trfe(zr,-)f({y,}, (5h” (1)
J

and thusG} < G,. So calculatingeg(K) using S(0) = 0 and (4) andx(K) from the
divergence of (8) will yieldac(K) < ag(K). This contradicts the definitions of these
capacities and shows that for finite the RS parametrization (3) is insufficient. However,
the scaling of the order parameters we shall find below suggests that the difference between
the left- and right-hand side of (11) is immaterial for larfe and that (4) and (8) should
to leading order yield the same result in this limit. These observations are quite compatible
with what was found by the stability analysis for the tree.

To calculate the capacity, our main task is to bring the energy term (5) into a more
manageable form. We only need to do this fier— 0 and the only reasonable behaviour
of w in this limit is w — 0. Consequently the average ovgrin the expression foG,
will be dominated by the value of the maximum, and after a gauge transformation we find
that form, w — 0

FAYh A H" =~ rﬂ:’;}xe*%’"w_z ) 17[9(71' Yj+2z; + %Tj% Xk: Tkzk>. 12)
The above can be seen as a quadratic optimization problem with linear inequality constraints.
Denote by{z;} the argument of the maximum and let us say that a si®in the interior

if 7Y + 27 + (W/w)T; % >, wzj is positive. It is then easily seen that, fgrandk two
interior sites,7;z7 = 7z;, and we denote this common value by The main obstacle to
simplifying (12) is that we do not know which of the sites lie in the interior. Consequently,
we focus on the largée limit and, taking a hint from the analysis of the tree committee

in [7], assumenw—? to be of the order ofk2. Furthermore, we assume that the ratio of

w and w does not diverge with increasing. Let us call a sitej embedded ifr;Y; is
positive. With the above scaling, one sees that (12) will be negligibly small for l&rge
unlessY; = O(1/K) for any site which is not embedded and unless the number of non-
embedded sites is small. Generically thieare on the order of 1 and so we may assume
this for the sites which are embedded. This scaling offthenplies that for largek a site

will lie in the interior exactly if it is embedded. Assuming is known, this enables us to
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calculate the value off for the sites which do not lie in the interior as a functions6f
Optimizing s* yields, for largeK and the above scaling of thg,

w22 S ohecnn) (13)
and
FAY) " ~ exp[ - lziz S V(-5 + o (5 _ 1)(2 Y,-e(_,jyj)>2] (14)
c = - 2c\c F
Here we have introduced the new parameteasid ¢ reflecting the scaling ofr, w and w
via

m K? m K?
2 c (w + w)? ¢ (15)
Later we shall find that = ¢ holds for the stationary values and hencgw = 0. So we
could have arrived at the statement that the interior sites are the embedded sites, and thus
at (14), by the argument that this will be true in the limit of small valuesvgfv.

To perform the trace and the average oyem (5) we now rewrite the argument of the

logarithm inG, as

/dx du e(m<Trf3<M - \/1? > z_,-)g(x — VK (ix + 1Y)
J

Xf({MXj+ij+jE},{fj}> > (16)
(i}

and introduce a Fourier representation of shfeinctions with conjugate variablésand i.
Using (14) for f and linearizing the square of the sum in (14) by a Gaussian inteBggl (
factorizes the trace and the average oyer Performing the trace and the average allows
us to rewrite (16) to leading order ik as

/ dx di dp di

(7 )/Dpexp[ i — |m+|)\ufx+w2(x)—f 2(1— A(L))

—MUB(A)—%ZZ \f B(x)( \/fupd/szdz/(zm)]

(17)
Hered? = (¢/c) — 1 and

1 ux; +r/vK
1 uxj +r/vK ? 2 Ux; —i—)»/\/
A(m:KZ(l—zH (v)) B()\) = f; ( )

j
(18)

It is straightforward to perform the integral overin (17). For largeK one may linearize
the dependence onand find thatZ(1) ~ Z(0)+AB(0)/v as well asA(1) >~ A(0), B(A) ~
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B(0). This makes it possible to carry out the remaining integrations and rewrite (17) as

1 I
(1 \/?3(0)1(6_6)) 2 /im0y (_ Z(0) + iin/KZB(0) /v )

V2 Kv Jo V1= A(0) + B(0)2(92/v2 + 20 /v)
(19)
To arrive at the largek expansion ofG,, we now need to average the logarithm of this
expression ovex;. This is readily done by applying the central limit theorem to show that

in this limit Z(0) and v/ Kx are correlated Gaussian random variables, whesg8s and
B(0) may be equated with their average over #he Thus for largek

_ 1 - B (2/7)(po + arcsingo)
Gr=vest ZKJE(C ot / Dxin# < \/1 — (2/7)(=p2+ po+ arcsinqo)x) - (20

Similarly to the tree committee, the last summand is just the energy term arising in the RS
calculation of the Gardner volume for large By arguments analogous to [5] the extremal
problem (4) may now be found to yield

c=ac(K)™? c=c p2=-1

128 _
1-go= mac(K) 2 Po = —qo (21)
and
16

In contrast to the claim in [3] the storage capacity is higher than for the tree committee
where the prefactor is ¥&. But it does not diverge like I& as claimed in [8];
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